INDIAN SCHOOL AL WADI AL KABIR

DEPARTMENT OF SCIENCE 2024-25

UT MARKING SCHEME PHYSICS (042) CLASS XII

SET II

	→	1,
1	(b) \vec{F} /8	1
2	(b) -(1.0 x 10 ³ N/C) \hat{i}	1
3	(c) $C^2N^{-1}m^{-2}$	1
4	(c) C/4	1
5	(b) 4W	1
6	(d)	1
7	(c) Assertion is correct but Reason is incorrect.	1
8	(b) Both Assertion and Reason are correct and the Reason is not a correct explanation of the	1
	Assertion.	
9	Definition equipotential surface,	1
	Diagram for isolated charge, and electric dipole	1/2 + 1/2
	Or	
	Applying Guass's law, proof E = $1/4\pi$ Co q/r ²	
10	Definition of drift speed,	2
	V = E - iR	
	4 = 6 - 2R	
	$r = 1\Omega$	
11	Current per unit cross-section area	1
	Derivation of $\rho = \frac{m}{ne^2\tau}$	2
	$ne^2\tau$	
12	Definition of electric potential energy,	1
	$U = rac{1}{4\piarepsilon_0} \Big(rac{q_1q_2}{r^2} + rac{q_2q_3}{r^2} + rac{q_3q_1}{r^2}\Big)$	
		2
	$U=9 imes 10^9 \Big(rac{1 imes 10^{-6} imes \left(-1 imes 10^{-6} ight)}{0.1^2} + rac{\left(-1 imes 10^{-6} ight) imes \left(2 imes 10^{-6} ight)}{0.1^2} + rac{\left(2 imes 10^{-6} ight) imes 1 imes 10^{-6}}{0.1^2}\Big)$	
	$U = 9 imes 10^9 ig(-1 imes 10^{-10} - 2 imes 10^{-10} + 2 imes 10^{-10} ig) = 9 imes 10^9 imes -1 imes$	
	$10^{-10} = -0.9J$	
	So, work done by an external agent to bring the charges in such a	
	configuration, $W = -U = -(-0.9J) = 0.9J$.	
13	$E = E_1 - E_2 = E = \frac{1}{2\pi\epsilon_o} \frac{\lambda 1}{0.1} - \frac{1}{2\pi\epsilon_o} \frac{\lambda 1}{0.2} = 18 \times 10^9 [10 \ \lambda 1 - 5\lambda 2] = 18 \times 10^9 \times 200 \times 10^{-6}$	3
	$2\pi \epsilon_0 0.1 2\pi \epsilon_0 0.2$	
	$= 3.6 \times 10^{6} \text{ N/C}$	
	$F = eE = 1.6 \times 10^{-19} \times 3.6 \times 10^{6} = 5.6 \times 10^{-13} N$	
	Or	
	Gaussian surface is a cylinder of radius r and length L.	
	Contribution of flux at flat surfaces (s ₂ and s ₃)	
	$= \vec{E} \cdot d\vec{A} = E dA \cos 90^{\circ} = 0$	
	- E.UA - E UA COSSO = 0	

	Contribution of flux at curved surface(s ₁)	
	$=\int \vec{E} \cdot d\vec{A} = \int E dA \cos 0^{\circ} = E \int dA = E(2\pi rL)$	
	Using Gauss's law,	
	$\phi_{E} = E(2\pi rL) + 0 = \frac{total\ charge}{\epsilon} = \frac{\lambda L}{\epsilon}$	
	ϵ_{\circ}	
	$E2\pi r L = \frac{\lambda L}{\epsilon_0}, \qquad E = \frac{1}{2\pi\epsilon_0} \frac{\lambda}{r}.$	
	ϵ_{\circ} ϵ ϵ_{\circ} ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ	
	\overrightarrow{E} \overrightarrow{S} \overrightarrow{O} \overrightarrow{S} \overrightarrow{O} \overrightarrow{S} \overrightarrow{O}	
	+++	
	\$3 + E	
	ds	
14	(i) a (ii) a (iii) b (iv) c OR d	4
15	a non-metallic substance having a high specific resistance, a negative temperature	5
	coefficient of resistance and a high insulating resistance.	
	negative charges in the material orient themselves toward the positive electrode	
	and the positive charges shift toward the negative electrode	
	(a) capacity increases $C = kC'$ (b) $E = constant$ as $E = v/d$ (c) increases as C increases	
	Or	
	Derivation	
	1/8 times	
	$E = 2Kq\sqrt{2}$	